[[Orthonormal dense basis]]
# Parseval's relation
Let $X$ be a [[Hilbert space]] and $\mathcal{E}= \{ \ket{e_{i}} \}_{i=1}^\infty$ be an orthonormal dense basis.
Then for any $\ket{x},\ket{y} \in X$ we have #m/thm/anal/fun
$$
\begin{align*}
\braket{ x | y } = \sum_{j=1}^\infty \braket{ x | e_{j} } \braket{ e_{j} | y }
\end{align*}
$$
> [!missing]- Proof
> #missing/proof
#
---
#state/develop | #lang/en | #SemBr